SenticNet 4

نویسندگان

  • Erik Cambria
  • Soujanya Poria
  • Rajiv Bajpai
  • Björn Schuller
چکیده

An important difference between traditional AI systems and human intelligence is the human ability to harness commonsense knowledge gleaned from a lifetime of learning and experience to make informed decisions. This allows humans to adapt easily to novel situations where AI fails catastrophically due to a lack of situation-specific rules and generalization capabilities. Commonsense knowledge also provides background information that enables humans to successfully operate in social situations where such knowledge is typically assumed. Since commonsense consists of information that humans take for granted, gathering it is an extremely difficult task. Previous versions of SenticNet were focused on collecting this kind of knowledge for sentiment analysis but they were heavily limited by their inability to generalize. SenticNet 4 overcomes such limitations by leveraging on conceptual primitives automatically generated by means of hierarchical clustering and dimensionality reduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SenticNet 4: A Semantic Resource for Sentiment Analysis Based on Conceptual Primitives

An important difference between traditional AI systems and human intelligence is the human ability to harness commonsense knowledge gleaned from a lifetime of learning and experience to make informed decisions. This allows humans to adapt easily to novel situations where AI fails catastrophically due to a lack of situation-specific rules and generalization capabilities. Commonsense knowledge al...

متن کامل

SenticNet 3: A Common and Common-Sense Knowledge Base for Cognition-Driven Sentiment Analysis

SenticNet is a publicly available semantic and affective resource for concept-level sentiment analysis. Rather than using graph-mining and dimensionality-reduction techniques, SenticNet 3 makes use of ‘energy flows’ to connect various parts of extended common and common-sense knowledge representations to one another. SenticNet 3 models nuanced semantics and sentics (that is, the conceptual and ...

متن کامل

SenticNet 2

Web 2.0 has changed the ways people communicate, collaborate, and express their opinions and sentiments. But despite social data on the Web being perfectly suitable for human consumption, they remain hardly accessible to machines. To bridge the cognitive and affective gap between word-level natural language data and the concept-level sentiments conveyed by them, we developed SenticNet 2, a publ...

متن کامل

SenticNet: A Publicly Available Semantic Resource for Opinion Mining

Today millions of web-users express their opinions about many topics through blogs, wikis, fora, chats and social networks. For sectors such as e-commerce and e-tourism, it is very useful to automatically analyze the huge amount of social information available on the Web, but the extremely unstructured nature of these contents makes it a difficult task. SenticNet is a publicly available resourc...

متن کامل

Enriching semantic knowledge bases for opinion mining in big data applications

This paper presents a novel method for contextualizing and enriching large semantic knowledge bases for opinion mining with a focus on Web intelligence platforms and other high-throughput big data applications. The method is not only applicable to traditional sentiment lexicons, but also to more comprehensive, multi-dimensional affective resources such as SenticNet. It comprises the following s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016